The Winning Advantage: Using Opponent Models in Robot Soccer
نویسندگان
چکیده
Opponent modeling is a skill in multi-agent systems (MAS) which attempts to create a model of the behavior of the opponent. This model can be used to predict the future actions of the opponent and generate appropriate strategies to play against it. Several researches present different methods to create an opponent model in the RoboCup environment. However, how these models can impact the performance of teams is an essential aspect. This paper introduces a novel approach to use efficiently opponent models in order to improve our own team behavior. The basis of this approach is the research done by CAOS Coach Team for modeling and recognizing behaviors evaluated in the RoboCup Coach Competition 2006. For using these models, it is necessary a special agent (coach) which can model the observed opponent team (based on the previous research) and communicate a counter-strategy to the coached players (using the approach proposed in this paper). The evaluation of this approach is a hard problem, but we have conducted several experiments that can help us to know if we are going in a promising direction.
منابع مشابه
Soccer Goalkeeper Task Modeling and Analysis by Petri Nets
In a robotic soccer team, goalkeeper is an important challenging role, which has different characteristics from the other teammates. This paper proposes a new learning-based behavior model for a soccer goalkeeper robot by using Petri nets. The model focuses on modeling and analyzing, both qualitatively and quantitatively, for the goalkeeper role so that we have a model-based knowledge of the ta...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملMotion detection by a moving observer using Kalman filter and neural network in soccer robot
In many autonomous mobile applications, robots must be capable of analyzing motion of moving objects in their environment. Duringmovement of robot the quality of images is affected by quakes of camera which cause high errors in image processing outputs. In thispaper, we propose a novel method to effectively overcome this problem using Neural Networks and Kalman Filtering theory. Thistechnique u...
متن کاملProbabilistic Vision-Based Opponent Tracking in Robot Soccer
Good soccer players must keep their eyes on their opponents in order to make the right plays and moves. The same holds for soccer robots, too. In this paper, we apply probabilistic multiple object tracking to the continual estimation of the positions of opponent players in autonomous robot soccer. We extend MHT [3], an existing tracking algorithm, to handle multiple mobile sensors with uncertai...
متن کاملBraitenberg Soccer
Well-developed individual and collaborative skills, such as dribbling the ball, positioning, and passing are required for a team of robots to be successful against an opponent team in a robot soccer scenario. This paper proposes an approach to individual and collaborative skill learning, where the robots are modeled as Braitenberg vehicles, and the required skills are implemented as combination...
متن کامل